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The Arithmetic-Harmonic Mean 

By D. M. E. Foster and G. M. Phillips 
In memory of Professor E. T. Copson 

Abstract. Consider two sequences generated by 

an1+ I = M(a,,. b,), h,1 + =M'( a, I, b,) 

where the a,, and b,, are positive and M and M' are means. The paper discusses the nine 
processes which arise by restricting the choice of M and M' to the arithmetic, geometric and 
harmonic means, one case being that used by Archimedes to estimate 1r. Most of the paper is 
devoted to the arithmetic-harmonic mean, whose limit is expressed as an infinite product and 
as an infinite series in two ways. 

1. Introduction. Recently [3] we have discussed the generalized Archimedean 
process in which two sequences (an) and (bn) are defined by 
(la) an+ 1 = M(an, bn), 

(lb) bn+1 = M'(an+11 bn), 

where a0, bo E R+ and M and M' are mappings from R+ x R+ to R+ which satisfy 
the following three properties: 

(2) a < b R a < M(a, b) b, 

(3) M(a, b) = M(b, a), 

(4) a = M(a, b)= a = b. 

We shall refer to such mappings as means. In [3] we showed that for all means M 
and M' the sequences (an) and (bn) converge monotonically to a common limit, 
which we will denote by L(ao, bo), and that the errors of both sequences (an) and 
(bn) tend to zero like 1/4fn provided that M and M' possess continuous partial 
derivatives up to the second order. 

Archimedes' process for estimating 7T (see [4, p. 50]) is a special case (the original 
case) of (1) with ao = 3V'3, bo = '33 and M and M', respectively, the harmonic 
and geometric means. It is well known (see, for example, Phillips [6]) that, for this 
choice of M and M', there are two cases to consider depending on the initial values 
ao and bo. First, if ao > bo > 0, 

(5) a~ =2 2 aObo ) / n 
(a 2 tan(O/1/2 
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(6) h 2" ? b sin(0/2"), 
(ao bo 

where bo/ao = cos 0. In this case we see that 

(7) L(ao, bo) 
aobo 0 . 

_ 
a _0b 

Second, if bo > a0 > 0, we put bo/ao coshO and find that ,, and b, and L are 
given by (5), (6) and (7) with ao and bo interchanged in these three formulae and 
with tan, sin and cos replaced by the corresponding hyperbolic functions. We also 
note that an alternative formulation of L(a0, bo) for this latter case allows us to use 
the Archimedean process to compute the logarithm function from 

(8) (t2 - I)L(l/(t2 + 1), 1/2t) = log t 

for t > 1. (See, for example, Carlson [2] and Miel [5].) 
Thus we have results concerning the convergence and rate of convergence for the 

general case (1), and we also have a full analysis of Archimedes' special case. This 
paper is devoted to a study of other special cases of the generalized Archimedean 
process which are of obvious interest. Specifically, we wish to explore thoroughly the 
cases where M and M' are drawn from the set (A, G, H), where A, G and H denote 
the arithmetic, geometric and harmonic means, respectively. 

2. M = G, M' = H. The second case which we consider is where M = G, M' = H, 
which is the Archimedes process with the two means transposed. It is not difficult to 
verify that, if 0 < ao < bo, 

(9) a,, 22" lasin 2 n 

(10) b,, =2"a tan(O/2n), 

where 

2 LO ~~~~~~~1/2 
(11) ao/bo=cos20 and a=bo/ o I) 

It follows that 

(12) L(ao, bo) = cos((a0/bo) 2) bo/(LO - I) 

For example, with ao = 33/4 and bo = 3C3 we have 0 = 7r/3; then an and b, 
correspond respectively to the areas of the inscribed and escribed regular polygons 
of the unit circle with 3 . 2" sides. We recall that, in the Archimedes process proper, 
a, and bn are the semiperimeters of these same polygons. Thus we can think of this 
'transposed Archimedes' process as one which Archimedes might have used. To 
complete this case we note that, if 0 < b0 < ao, we need to replace sin, tan and cos 
by the corresponding hyperbolic functions in (9), (10) and (11) and redefine a as 
bo(I -bolao)-1/2 

3. M = M'. We now deal with the cases where M M' E (A, G, H). First we 
observe that these means may be written in the form 

(13) M(a, b) = f'(( f(a) + f(b)))W 
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where f(x) = x, log x and l/x gives M = A, G and H, respectively. (We remark in 
passing that (13) defines a mean in the sense used here for any continuous mappingf 
from R+ to R+ which is strictly monotonic increasing.) Thus the process (1) may be 
expressed as 

(14a) f (an+ I)- (f(an) + f(bn)) 

(14b) f(bn+1) = (f (an+1) +f(bn))' 

and the three cases M = M' E (A, G, H) are reduced to the single case M = M'= A. 
The explicit forms for an and bn in this latter case are easily obtained as 

(15) an =L(ao,bo) + ? . (ao-bo), 

(16) bn = L(ao, bo) - 
-*. (ao -bo) 

where the common limit is 

(17) L(ao, bo) = 4(ao + 2bo). 

We note that (15) and (16) show very clearly both the monotonicity and rate of 
convergence of the errors to which we referred in Section 1 above. 

4. (M, M') = (A, G). When M = A and M' = G or M = G and M' = A, we can 
reduce the problem to one which we have already considered. For example, if 
M = A and M' = G, (1) becomes 

(18a) a" =,-(an + ba) 

(18b) b = (a +bn) 

and the substitution u. = l/an, vn = l/bn transforms (18) into the original Archi- 
medean process. 

5. The Arithmetic-Harmonic Mean. The final cases which remain to be explored in 
this paper are when M = A and M' = H and also M = H and M' = A. Let us write 
L(ao, bo), as before, to denote the common limit of the sequences defined by 
(19a) a"+, = '(an + ba) 

(19b) l/b 1 = 4(l/an+ 1 + l/bn) 

The other case, with the means A and H interchanged gives the sequences defined by 

(20a) l/an+1 = -(l/an + l/bn), 
(20b) b = 4(a+1 + ba) 

If we denote the common limit of the latter pair of sequences by L'(ao, bo) it is clear 
that 

L'(a0, bo) = l/L(l/ao, l/bo). 

Thus we need consider only one of these two cases and we will restrict our attention 
to (19). 

First we note the homogeneous property, evident from (19), that 

L(Aao, Abo) = XL(ao, bo) 
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for any positive A, ao, bo. Thus it suffices to consider the case where, say, bo I 1 and 
ao = 1 + x, with x > - 1. It follows by induction that, for any n> 1, 

l n- I 

(21a) an = 2- n"H (22r- I + x)/ (22r + x), 
r=l r=l 

(21b) bn = 2n H1 [(22r- I + x)/(22r + x)]. 
r= I 

In analyzing the limit of this sequence we find it convenient to define 

F(x) = L(1 + x, 1) = lim bn, 
n --0o 

so that 

(22) F(x) II [(1 + 2x/4r)/(1 + x/4r)]. 
r= 1 

It follows immediately from (22) that 

(23) (1 + 4x)F(x) = (1 + ix)F(*x). 

Now we write 

(24) F(x)=1 + c1x + C2X2 +... 

On substituting (24) into (23) and comparing coefficients of xm, we obtain 

Cm + 4Cmi = Cm/4m + 2CmI/4m 

for m > 1, with c0 = 1. Hence we obtain 

(25) Cm =(_I)m- I(4"~ ). 42 
(25) ~~~~~~~(4" - 1) .. (4 - 1) 

so that 

(26) F(x) = 2 + Ix _ 2 2 4 x3 
3 45 4 ~0-5 

and an inspection of (25) shows that the series (26) is convergent for IxI < 4. Since 
we are concerned only with x > - 1, the series (26) is valid for -1 < x < 4. 

To obtain an expression for F(x) valid for x > 4, we could apply (23) repeatedly 
and write 

F(x) = [(I + 2x/4r)( + x14 I]( + 3(x/4") -45 (xl4')2 + *) 

where the latter series is convergent for IxI < 4 
We now explore an alternative representation for F(x) for large x. We define 

00 
2x 

(27) (x) = log F(x)= E (log( + - log( + )) 
r=I 

and write x = 4' where m < t < m + 1 and m is a positive integer. We express 

v4(x) = St(x) + S2(x), 

where S, (x) is the sum of the first m terms on the right of (27). Thus 

S2 (x) E (log 1 + A_ - log 1 + 
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and, on using the monotonicity of log(l + x) and the inequality 

log(l + x) < x 

for x > 0, we obtain 

O<S2(x) < E log(1 + ) 3<- 

so that S2(x) = 0(1) for large x. For S1(x) we write 

Si(x) = r (log(I + 
2 

- log(l + 

lorgI (log t( +2 41-r) -log (1 + 

= mlog2 + , (log( I+ 2 4t-r) - log( + 4t-r)) 

It follows that S1(x) = mlog2 + 0(1) and thus 

(28) {p(x) = 2 logx + 0(1). 
We may similarly verify that 

+(x) - 4{(2/x) = mlog2 + Ap(u) - 4(21u), 
where u = 4t-m = x/4m. This shows that 

(29) 4i (x) - 4 (2/x) - 2 log x 

is unaltered when x is replaced by x/4m. It turns out that the expression (29) 
provides the key to a full understanding of the function 4' and thus of the limit of the 
arithmetic-harmonic mean process. However, it is convenient to 'centralize' the 
function (29) so that it is zero when x = V2. We therefore now study the function 

(30) 8(x) =A(x) - 4(2/x) - 2 logx + ' log2 
and verify some of its properties. 

6. The Function 0. 

LEMMA 1. For all x > 0, S(I/x) = 8(x). 

Proof. From (27) we have 

{i(l/x) - +P(2x) = E (log(I + k) log( + 

E 1( 4x )1(1+2x ) 

E~I (log(l + - log(l + + log(l + x ) 

- E (log(l + - log(l + - +log(l + x) 

- -4(2/x) + 4A(x) - log x 

and Lemma 1 follows. 
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LEMMA 2. For all x > 0, 8(2/x) = -8(x). 

Proof. This folloWs immediately from (30). 

LEMMA 3. For all x > 0, 8(2x) = -8(X). 

Proof. Applying Lemma 2 and then Lemma 1 we obtain 

8(2x) = -8(l/x) = -8(x). 

An immediate consequence of this last lemma is that 8 is unaltered when x is 
replaced by 4x. We note in passing that this confirms our earlier observation, 
derived from a somewhat tedious manipulation of the infinite series for Ap(x), that 
(29) is unaltered when x is replaced by x/4m. 

Because of the symmetries of 8 revealed by the above lemmas, we need sketch the 
graph of 0 only over the interval, say, [1, V2 ] to see how 8 behaves for all x > 0. By 
direct calculation, 0(x) apparently decreases monotonically to zero over the interval 
1, 4] from a maximum value of 8(1) = 2.62 * 10(-6. Thus, for all x > 0, using the 

above lemmas and the computational evidence over [1, V' ], 8(x) oscillates between 
the values ? 8( 1). These calculations further suggest that, for all x > 0, 

0(x) (1)co~ ~rlog 
(3 1) 8 ( x) = 8 ( I)cos( I 

" (31) 
~~~~~~~~~~~log2 J 

In order to test these conjectures, we use (30) to express 

8 ( x )=E (log I + - log( + ) 

r=I (l( 4'-1x) i (l+4rx))-2l+og(i + 

+ E (log( I + - log(l + + log x - log(1 + x) + g log2. 

We now replace each logarithm above by its Maclaurin series and rearrange the 
order of the summnations to give 

r- I 
(32 log) I ( log In (x+ n+ log x -log(l x) + 4log 2. 

where this latter representation for 8(x) is valid for 2 x X 2. (There are no 
difficulties in justifying the rearrangement of the double series.) We note that, 
happily, the range of validity of (32) occupies precisely one cycle of the oscillatory 
function 0. 

Encouraged by the approximation (31) we put x = e ' in (32) and construct the 
Fourier series for 8(e ') on [-log 2, log 2] of the form 

00 

* 42 a0 + E ((ar cos(r7t/log 2) + br sin(r7rt/log 2)). 
r I 
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Since S(e-') is an even function of t, as is shown by Lemma 1 and readily confirmed 
by the representation (32), we see that each br = 0 and 

(33) ar = 2 8(e')cos(r7Tt11og2) dt. r log 2 

Further, let us express the above integral as a sum of two integrals 
log 2 log + 2log2 

() ( 2 log2 

and make the substitution t = log 2 - T in the latter integral. Then, on using Lemma 
3, we deduce that ar = 0 if r is even. 

To pursue (33) for r odd, we need to evaluate several integrals. First we obtain 

flog 2 1i 
(34) J e"' cos(r t/log2) dt= -(2n + 1)/[ + 

() ~~~~~~~nnlo2 

for r odd, on integrating by parts twice. Second we derive 

f I tcos(ri7t/log2) dt = -2( rg2T 

for r odd. We also need to evaluate 

fog 2log(i + e-')cos(rTt/log 2) dt 
() 

which we do by expressing log(l + e-') in powers of e-' and using (34) for n = -1, 
-2,.... 

Thus we derive from (32) and (33) the Fourier coefficients 

(35) ar = _o2[lo2) 2E (-)' (nT/og) r 
log 2 |( rT ) n-ln2 + )2 

for r odd and ar = 0 for r even. The latter series may be summed by using a 
standard contour integration technique. We have 

L.d ~~ 2 + - csch ia. 
= n + a 2a2 2a 

(See, for example, Whittaker and Watson [7, Example 5 of p. 136].) Thus (35) 
simplifies greatly to give 

(36) a 2 
==csch IT2 r r log2 

It is easily verified that this Fourier series converges to 8 for all x > 0, and we may 
write 

10 (1"2(2r - 1) r(2r - 1)'71Tlog x 
(37) S(x)= 2E cschl I Cos 

r_ 
2r - 1 log 2 co1 log 2 

We note that the coefficients ar, given by (36), tend to zero very rapidly indeed. The 
first few values are approximately 

al = 2.62- 10-6, a3 = 3.74 IO-'9, a5 = 9.64 -10-32. 

This shows that the approximation to 8(x) conjectured in (31) is extremely good, the 
maximum error being of order 10'9. 
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7. The Limit for Large x. Having investigated the function 6, we return to (30) and 
write 

(38) {(x) = logx - 1log2 + 3(x) + 4i(2/x), 

so that 

F(x) = 2- 1/4X1/2es(v)F(2/X). 

If x > ,, we may use (26) to express F(2/x) as a power series in l/x and thus 
obtain 

(39) F(x) = 2-/ 4x/2ea(x)(I + 4 _ 8 + 32 ) 

valid for x > where 8(x) is given by (37). 
Having now attained our goal of obtaining an expression for F(x) for large x, we 

remark on the subtle role played by the function S. There is one very simple relation 
involving F which we did not use in the foregoing analysis. This is 

(40) F(X F(2x) = I + x, 

which follows immediately from (22). 
Before discerning the involvement of the function 8, we falsely conjectured from 

(40) that, for large x, F( x) had the form of (39) with the factor exp(B(x )) missing. It 
is amusing to see that this conjecture is consistent with (40), due to the fact (Lemma 
3) that 

e'V) . e8(2 =-l 

Finally we draw a comparison between the arithmetic-harmonic mean process (19) 
and the superficially similar process 

(41 a) a,,II = ,(a,, + b,,), 

(41b) I/b,,+1 = 'I(/a,, + I/b,,). 

It is well known and readily verified that a,,b,, is invariant and that (41) is the 
Newton square root process 

1/ a 
az,,+, a, t " z, 

+ 
2 an 

where a = aob() and (a,,) converges quadratically to Va. (See Carlson [11.) Thus the 
processes (19) and (41) both involve the square root function in their respective 
limits. 
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